

IntelliCap: Intelligent Guidance for Consistent View Sampling

Ayaka Yasunaga Keio University, Japan Hideo Saito Keio University, Japan Dieter Schmalstieg University of Stuttgart, Germany Shohei Mori University of Stuttgart, Keio University

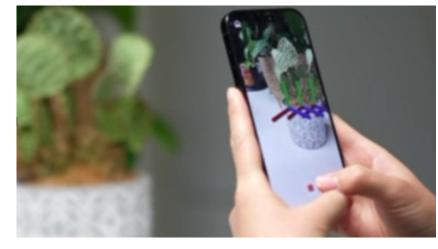
Background

- Novel view synthesis from images has made great progress
- High-quality view synthesis requires uniform and dense sampling
 - Not easily addressed by human camera operators

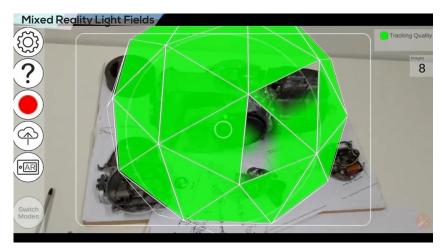
Background

- Novel view synthesis from images has made great progress
- High-quality view synthesis requires uniform and dense sampling
 - Not easily addressed by human camera operators

Core Challenge: How can we effectively design a view sampling strategy for novel view synthesis using fewer multi-view images?


Related Works: Small Area Coverage

AR can visually indicate
where to collect image sample
3D axes, 2D planes, hemispheres


Existing approaches work well for

a single object or forward facing scenes

Solutions that scale to larger scenes or open areas are lacking

[B. Mildenhall+, TOG, 2019]

Related Works: Missing Knowledge of Scene Objects

View-dependent effects

must

be thoroughly captured

specular reflections, transparency, etc.

However, data acquisition should be timely

Therefore, the sampled areas must be **prioritized**

The Solution...?

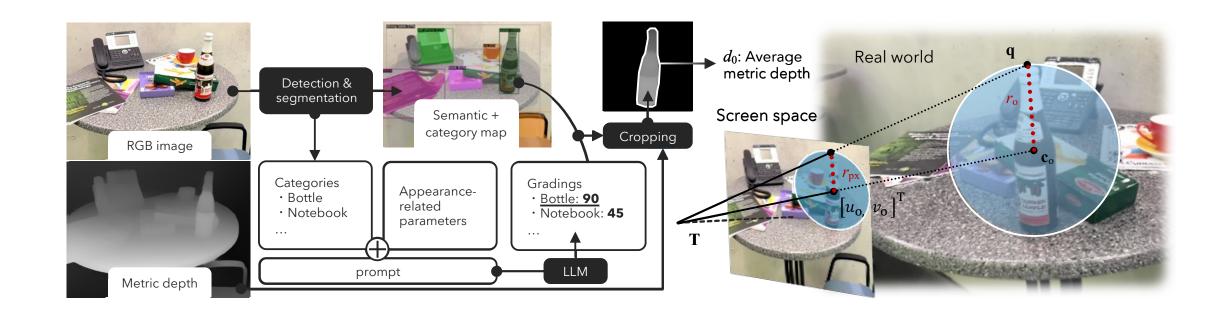
- 1. Progressive visual indicators using 3D mesh and sphere
- 2. LLM-based scoring of detected objects and their categories

Spatial and angle coverage analysis

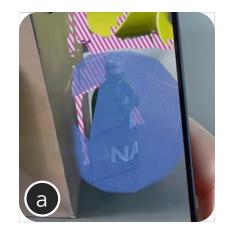
3D mesh proxy for spatial coverage

Highlight regions that have not yet been reconstructed, based on the current 3D reconstruction

3D sphere proxy for angular coverage


Detect only objects that benefit most from denser view sampling. Only for these, we generate 3D sphere.

3D sphere generation


Our system detects important objects for view sampling using LLM and projects them into real-world space as spheres.

Dynamically adjusting 3D spheres

- a. Occlusion handling
- b. Distance-based suppression
- c. Merging spheres

Scene adaptive 3D sphere visualization

Occlusion handling

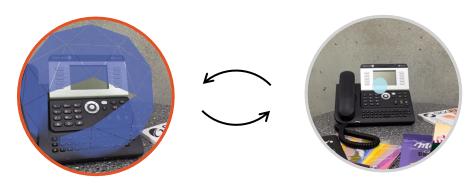
Objective: To prevent confusion about occluded areas

Sphere's alpha value is dynamically adjusted

based on depth with surrounding scene elements

The level of sphere transparency is determined by the offset in depth

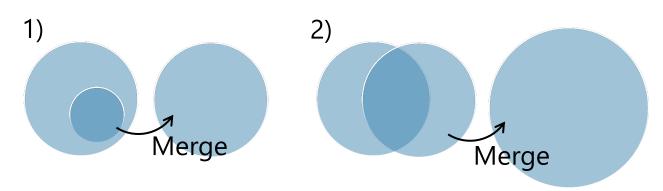
- The depth difference between the sphere and the scene
- Tolerance threshold set to 5.0 cm by default



Distance-based suppression

Objective: View sampling requires approaching within a set distance, encouraging closer interaction

Spheres are visualized only when they fall within a valid distance range

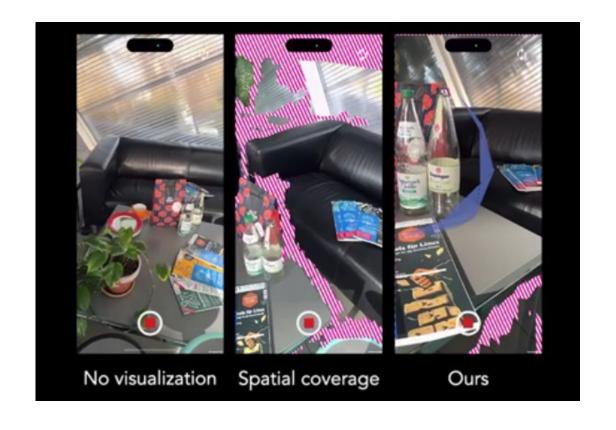


Merging spheres

As the number of spheres increases, the workload for capturing becomes higher

Objective: To minimize the number of spheres

Intelligently merging expendable spheres



Evaluation: Study Setup

Gaol: We evaluate our system in terms of usability, task load, and the resultant view synthesis quality from images collected.

Baseline approach:

- NV: The video stream is presented without any guidance
- SC: Only spatial coverage is visualized

Evaluation: Study Setup

Participants: 12 participants (two female and 10 male, \bar{X} =29.2 (SD=4. 2) years old, all right-handed and corrected vision).

Scene: Arranged objects with reflective and transparent materials

Lounge Shelf Workspace

Result: View synthesis quality

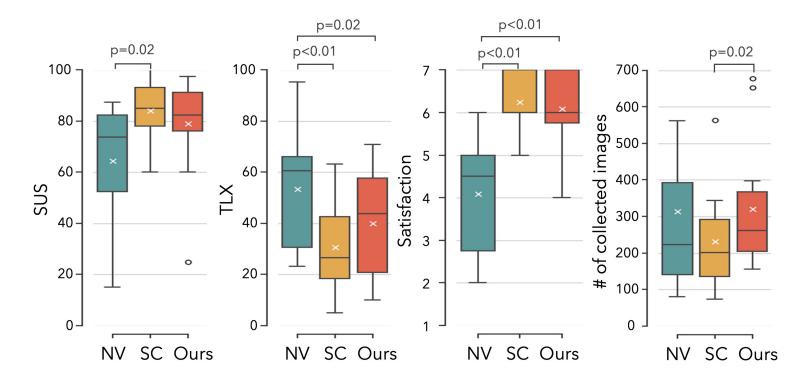
- ✓ Our method outperforms the baselines in all image quality metrics
 - Performance: Ours > SC > NV

Table: Quantitative comparisons against baseline data collection strategies in view synthesis quality.

3DGS				_	Nerfacto			
	PSNR (↑)	SSIM (†)	LPIPS (↓)			PSNR (↑)	SSIM (†)	LPIPS (↓)
NV	16.338 (3.346)	0.752 (0.142)	0.292 (0.120)		NV	16.115 (2.592)	0.558 (0.088)	0.589 (0.072)
SC	17.086 (3.435)	0.800 (0.132)	0.253 (0.112)		SC	16.372 (2.488)	0.574 (0.075)	0.570 (0.069)
0urs	18.891 (3.195)	0.848 (0.111)	0.201 (0.102)		0urs	18.134 (1.859)	0.616 (0.068)	0.520 (0.065)

Result: View synthesis quality

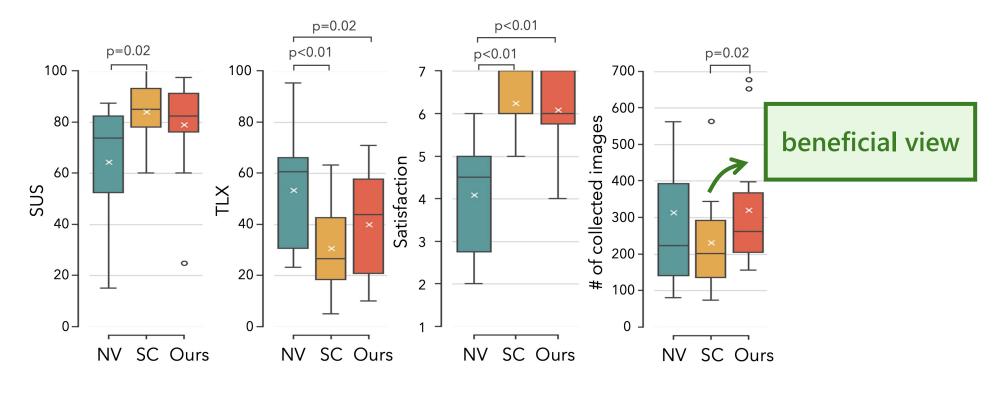
✓ Our approach effectively captures challenging aspects such as specular reflections and transparency, which baseline methods often miss.


3DGS view synthesis results using data collected by ours and baseline approaches

Result: Usability and Task Load

✓ SUS, TLX, Satis:

No statistically significant difference was observed for Ours in SUS

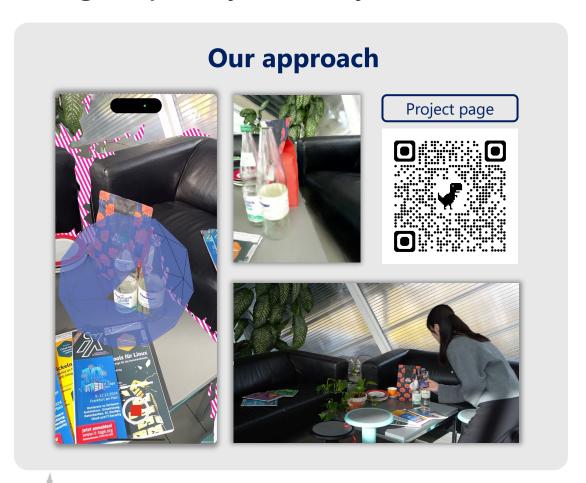


Results of the user study

Result: Usability and Task Load

✓ Ours encourages the addition of beneficial viewpoints, enhancing view synthesis quality.

Results of the user study


Conclusion

Novel view sampling approach for high-quality view synthesis

- Spatial and angle coverage analysis
- 3D sphere generation
- Dynamically adjusting 3D spheres

Future directions

- Large scale and outdoor scenes
- Efficient task completion
- Misidentification and misalignment

