

Radiance Fields for XR

A Survey on How Radiance Fields are Envisioned and Addressed for XR Research

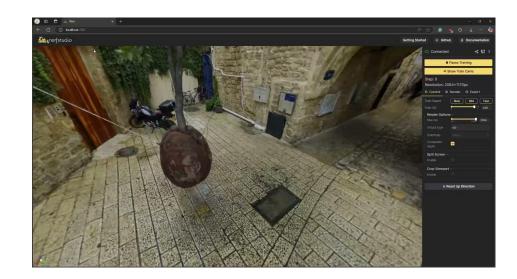
¹ Ke Li, ² Mana Masuda, ³ Susanne Schmidt, ⁴ Shohei Mori

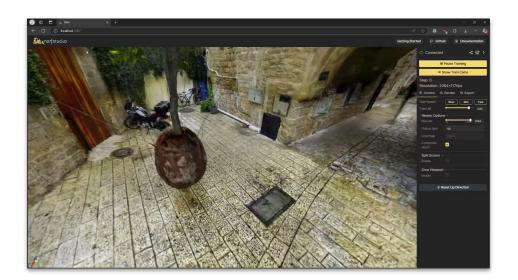
¹ Human Computer Interaction Group, Hamburg University, Germany

² Keio University, Japan

³HIT Lab, University of Cantebury, New Zealand

⁴ Visualization Research Center (VISUS), University of Stuttgart, Germany

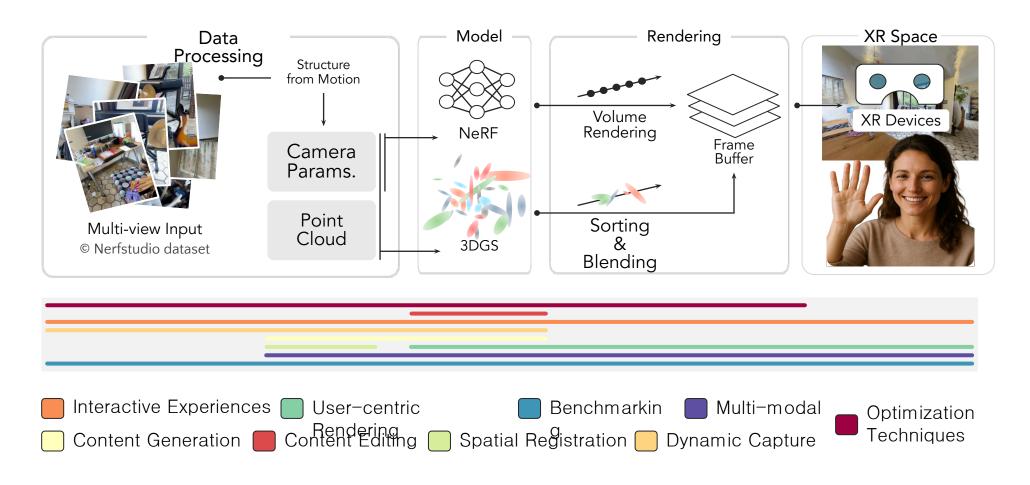




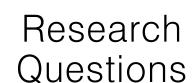
Radiance Field for Photorealistic 3D Scene Reconstruction and Representation

Neural Radiance Fields (NeRF)

3D Gaussian Splatting (3DGS) ²

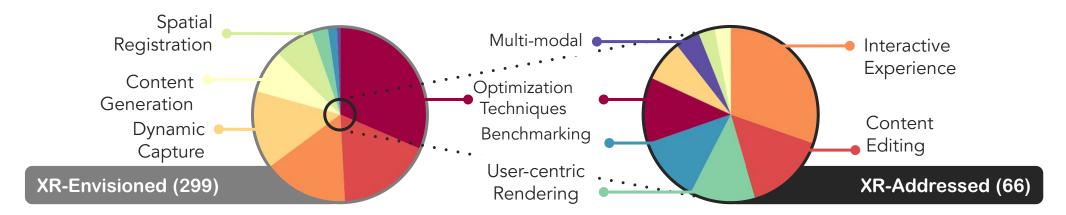


Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., & Ng, R. (2020). NeRF. Communications of the ACM, 65, 99 - 106. Kerbl, B., Kopanas, G., Leimkuehler, T., & Drettakis, G. (2023). 3D Gaussian Splatting for Real-Time Radiance Field Rendering. *ACM Transactions on Graphics (TOG)*, 42, 1 - 14.



Research themes increasingly relevance to user's XR experiences across the **capture** → **render** pipeline

RQ1: How are radiance fields **envisioned** for XR?

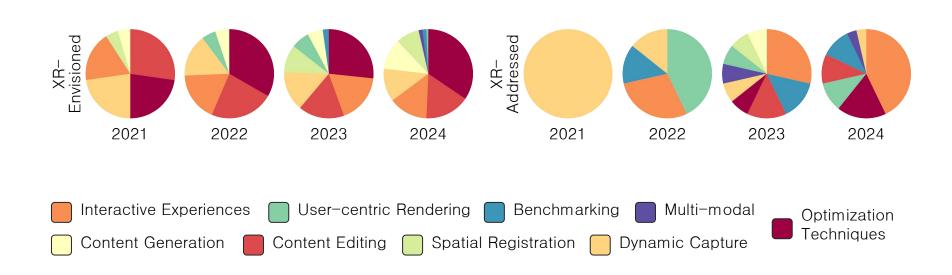

RQ2: What have been implemented in actual immersive XR settings?

RQ3: What are the **research gaps** for widespread adaptation in XR?

Paper Screening via PRISMA 2020 ¹ Guideline

- RF papers: 03.2020 02.2025
- 1676 papers: XR, HCI, CV, CG, Robotics, MM
- Thematic analysis: 365 XR-Mentioned
- Full text analysis : 66 <u>XR-Addressed</u> → involves XR devices or users
 - o <u>Mark Study (24)</u> → In depth user study or benchmark
 - o ★ XR-Showcase (42) → proof-of-concept demo

¹ Page, Matthew J. et al. "The PRISMA 2020 statement: an updated guideline for reporting systematic reviews." Systematic Reviews 10 (2020)


Gaps in Trends

Envisioned vs. Addressed Topics

- •Addressed in all 9
- sparsely implemented/tested in XR systems

Open Source

• Envisioned papers (62.5%) vs. Addressed (34.8%)

Interactive Experiences

Collaborative systems

Pop-up Metaverse, Reynolds et.al

Avatar&Agents

VOODOO XP, Tran et.al

Medical & Industrial Applications

AnthroNeRF, Zou et.al

Interaction

VR-GS, Jiang et.al

Challenges:

- **Dynamic** object changes
- Complex manual setup
- **Speed vs. fidelity** trade-off

Opportunities:

- Richer physics-based interaction
- Move from XR-showcase to XR-study
- Multimodal and multisensory interaction
- Hybrid representations

XR-addressed(5) XR-showcase(15) Open source(9)

Rendering

Challenges:

- Multi-resolution synthesis: retraining & storage intensive
- Real-time saliency for complex/dynamic scenes
- **Aliasing** degrade user experiences

Opportunities:

- Storage-efficient data structure & representations
- Dynamic scene handling via video saliency prediction
- **Real-world** integration beyond psychophysics experiments

2. User-centric

Foveated Renderina

VPRF, Wang et.

Omnidireaction & light field

OmniPlane, Kou et.al

XR-addressed(5) XR-showcase(3) Open source(1)

Frameworks & Toolkits

VR-NeRF, Xu et.al

User Evaluation & Pilot Testing

Is 3DGS Useful? Kim et.al

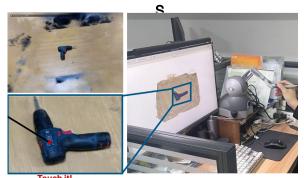
XR-addressed (4) XR-showcase (4) Open source (2)

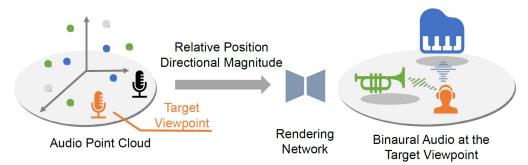
3. Benchmarking & Toolkit

Challenges:

- Lack of standardization for RF in XR
- Interoperability issues between neural rendering with traditional graphics pipeline
- Limited user-centric benchmarking

Opportunities:


- Standardized benchmarking framework for XR
- Improve accessibility, e.g. enhance single-shot technique
- Gaze/motion prediction for reducing streaming/rendering latency
- Comprehensive user evaluation (e.g. IPQ, SSQ, QoE, etc)


4. Multimodal & Multi-sensory RF

Haptic

Haptics Rendering of NeRF, Zhang et.al

Audio

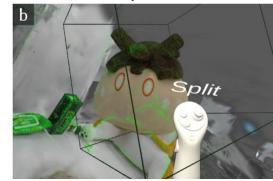
Extending GS to Audio. Yoshida et.al

XR-addressed (1) XR-showcase (2) Open source (0)

Challenges:

- Lack of **precise geometric** information
- High refresh rate haptics require additional compute resource
- Multi-modal and multi-sensory data synchronization

Opportunities:


- Extend to other sensory or data modalities
- Infer material or textile-level feedback from visual info
- Unification and synchronization

5. Content Editing

Segmentation and decomposition

GaussianShopVR, Shen et.al

Interactive Color Editing

"A violet garden"

Palette Gaussian, Ren et.al

Challenges:

Object Insertion or

Removal

DimSplat, Waldow

et.al

- Relighting and simulating intricate
 lighting effects (e.g. multi-bounce)
- Current methods limited to static scenes
- Heavy pre-processing still required

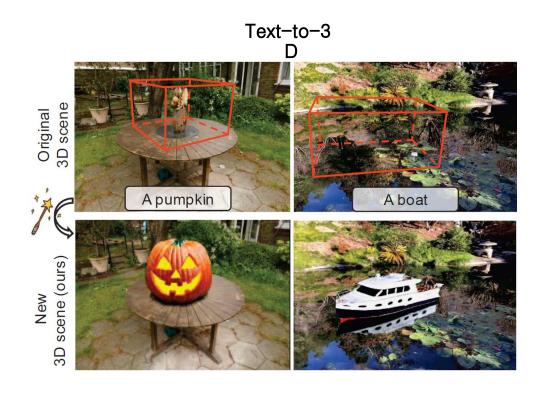
Opportunities :

- Limited in depth technical benchmark and user evaluation
- More diverse and innovative interaction design paradigm

XR-addressed (3)

XR-showcase (7)

Open source (3)


6. Content Generation

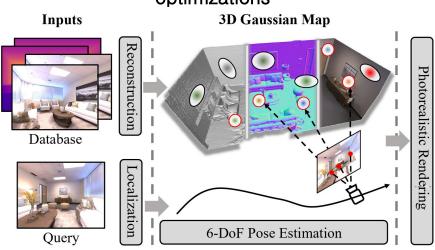
Challenges:

- Consistency between generated objects and existing scenes (e.g. realistic lighting)
- High text-to-3D latency
- Physical realism is limited, particularly for MR

Opportunities:

- Investigate realistic inpainting and blending
- Intuitive authoring interface
- Usability study between different 3D content authoring methods
- Extend to real-world immersive MR

Go-NeRF, Dai et.al


XR-addressed (1) XR-showcase (1) Open source (0)

7. Spatial Registration

Inverse pose estimation/ cam param optimizations

SplatLoc, Zhai et.al

Challenges:

- Accurate, efficient registration with XR
- Mobile device has limited compute, particularly for dynamic
 environment

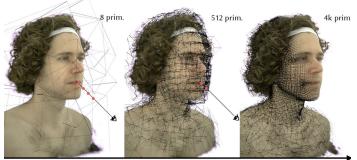
Opportunities ene initialization and relocalization

- Integrate registration tightly with real-time rendering
- Lightweight, efficient XR registration pipelines for **mobile devices**

XR-addressed (1) XR-showcase (1) Open source (2)

8. Dynamic Capture

Challenges:


- No XR-addressed (n=0)
- High computational cost with avatar rendering
- Real-time, high-fidelity dynamic scene capture &
 rendering not yet achieved for XR

Opportunities:

- How photorealistic dynamic avatars are perceived (e.g. IPQ, embodiment, uncanney valley)
- Robust dynamic scene reconstruction for XR

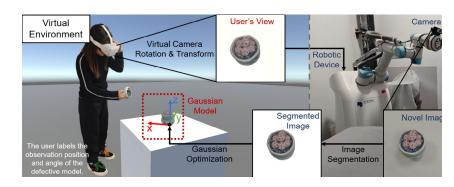
Dual 3DGS for Immersive Human Volumetric Video Llaing et al.

Mixtures of Volumetric Primitives

Mixture of Volumetric Primitive, Lombardi et.al

XR-addressed (0) XR-showcase (5)

Open source (2)


9. Optimization Techniques

Compressio

Superpixel-guided sampling for 3DGS compression, Kim et.al

Capturing Improvement

Human in the loop capturing, Dongye et.al

Challenges:

On the fly capturing for XR

Re-ReND, Rojas

et.al

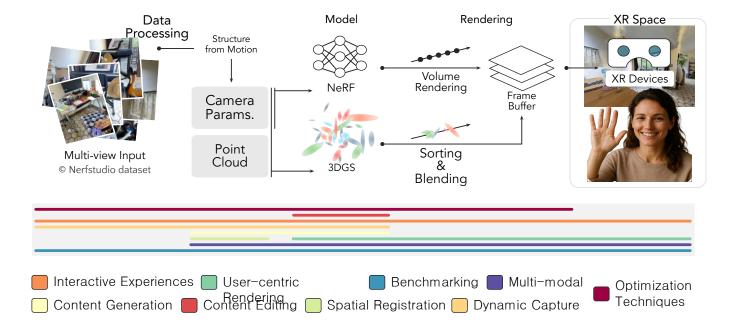
Resource constrained

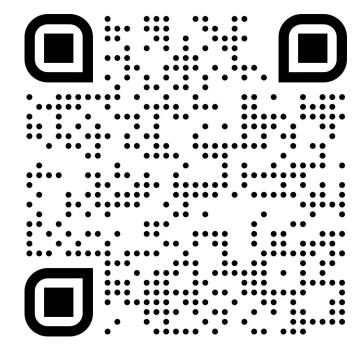
Rendering

- 3D/4DGS scalability
- Conversions (e.g. NeRF→ mesh)
- Speed vs. memory trade-off

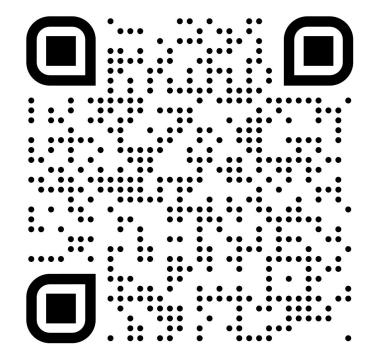
XR-addressed (4) XR-showcase (4) Open source (2)

Opportunities :


- Scene-aware 3D reconstruction
- Optimize for physics-based interactions and haptics
- Improve RF performance on mobile (speed + memory)

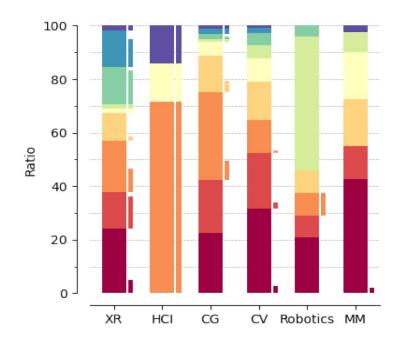

Conclusion s

- Nine key themes of RF for XR
- Majority of XR implementation remains
 XR-showcase/XR-envision
- XR-Addressed OSS is limited
- Limited <u>ethical considerations</u>



Awesome RF4XR Repo

Project Page



https://github.com/mediated-reality/awesome-rf4x

https://mediated-reality.github.io/rf4xr/papers/li_tvcg25/

Trends & Observations

Communities & Interests

- XR + HCI → more practical implementations (XR-Addressed)
- CV + CG + Robotics + MM → mostly envision
- Non-XR communities provide technical advances but limited system-level validation

